Organelle size control - increasing vacuole content activates SNAREs to augment organelle volume through homotypic fusion.

نویسندگان

  • Yann Desfougères
  • Heinz Neumann
  • Andreas Mayer
چکیده

Cells control the size of their compartments relative to cell volume, but there is also size control within each organelle. Yeast vacuoles neither burst nor do they collapse into a ruffled morphology, indicating that the volume of the organellar envelope is adjusted to the amount of content. It is poorly understood how this adjustment is achieved. We show that the accumulating content of yeast vacuoles activates fusion of other vacuoles, thus increasing the volume-to-surface ratio. Synthesis of the dominant compound stored inside vacuoles, polyphosphate, stimulates binding of the chaperone Sec18/NSF to vacuolar SNAREs, which activates them and triggers fusion. SNAREs can only be activated by lumenal, not cytosolic, polyphosphate (polyP). Control of lumenal polyP over SNARE activation in the cytosol requires the cytosolic cyclin-dependent kinase Pho80-Pho85 and the R-SNARE Nyv1. These results suggest that cells can adapt the volume of vacuoles to their content through feedback from the vacuole lumen to the SNAREs on the cytosolic surface of the organelle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved reconstitution of yeast vacuole fusion with physiological SNARE concentrations reveals an asymmetric Rab(GTP) requirement

In vitro reconstitution of homotypic yeast vacuole fusion from purified components enables detailed study of membrane fusion mechanisms. Current reconstitutions have yet to faithfully replicate the fusion process in at least three respects: 1) The density of SNARE proteins required for fusion in vitro is substantially higher than on the organelle. 2) Substantial lysis accompanies reconstituted ...

متن کامل

Osmotic Regulation of Rab-Mediated Organelle Docking

Osmotic gradients across organelle and plasma membranes modulate the rates of membrane fission and fusion; sufficiently large gradients can cause membrane rupture [1-6]. Hypotonic gradients applied to living yeast cells trigger prompt (within seconds) swelling and fusion of Saccharomyces cerevisiae vacuoles, whereas hypertonic gradients cause vacuoles to fragment on a slower time scale [7-11]. ...

متن کامل

Yeast homotypic vacuole fusion requires the Ccz1–Mon1 complex during the tethering/docking stage

The function of the yeast lysosome/vacuole is critically linked with the morphology of the organelle. Accordingly, highly regulated processes control vacuolar fission and fusion events. Analysis of homotypic vacuole fusion demonstrated that vacuoles from strains defective in the CCZ1 and MON1 genes could not fuse. Morphological evidence suggested that these mutant vacuoles could not proceed to ...

متن کامل

Relationship between endosomes and lysosomes.

Delivery of endocytosed macromolecules to lysosomes occurs by means of direct fusion of late endosomes with lysosomes. This has been formally demonstrated in a cell-free content mixing assay using late endosomes and lysosomes from rat liver. There is evidence from electron microscopy studies that the same process occurs in intact cells. The fusion process results in the formation of hybrid orga...

متن کامل

Membrane fusion: All done with SNAREpins?

SNARE proteins are sufficient to fuse artificial membranes together. In the cell, vesicle transport may rely on fusion mediated by interaction between vesicle (v) and target (t) SNAREs, whereas the homotypic fusion of organelle biogenesis may be mediated by t-SNARE-t-SNARE interaction.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 129 14  شماره 

صفحات  -

تاریخ انتشار 2016